SOME OBSERVATIONS ON THE CHEMISTRY OF KO2-DMSO SOLUTIONS

Ravindra L. ARUDI, Augustine O. ALLEN and Benon H. J. BIELSKI Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, USA

Received 12 October 1981

1. Introduction

Dimethyl sulfoxide (DMSO) is the most commonly used non-aqueous solvent for the superoxide ion (O_2^-) . Three main sources for O_2^- in DMSO are potassium superoxide (KO_2) [1], tetramethylammonium superoxide [2] $((CH_3)_4N^*O_2^-)$ and electrochemical reduction of dissolved O_2 in the presence of supporting electrolytes [3]. A comprehensive discussion of these solutions is given in [4]. The solubility of KO_2 in DMSO can be increased by a factor of 30 by addition of 18-crown-6 ether, which complexes K^+ .

Recommended methods for determination of O_2^- concentrations in DMSO include simple measurement of optical absorbance of the solution [5], and formation of color by addition of nitro-blue tetrazolium (NBT²⁺) or related compounds [6]. We find these methods unsatisfactory, because of interference by absorption of O_2 , dimsyl ion (CH₃SOCH₂), and (if crown ether is added to solubilize KO_2) the K^+ -crownether complex, all of which appear to be present in variable amounts in KO_2 solutions. Also, dimsyl ion effectively mimics some of the chemistry of the superoxide radical. Methods which gave good results include determination of oxygen formed by iodine oxidation of O_2^- [7], and optical determination of reduction of ferricytochrome c [8,9].

2. Materials and methods

KO₂ (purity <97%) was obtained from 3 suppliers: Pfaltz and Bauer; K and K Chemicals; Mine Safety Appliances (MSA). Material from the first 2 was granular, and was ground in a mortar before use; the MSA material was a fluffy powder. DMSO from Burdick and Jackson Labs. was redistilled over CaH₂ through a 20-plate column under reduced pressure.

Materials were stored, solutions made up and manipulations carried out in a dry-box under purified nitrogen or helium. Cytochrome c from horse heart, and nitroblue tetrazolium were from Sigma Chemical Co. The 18-crown-6 ether from Alfa products was purified by precipitation from dimethoxyethane [10]. Potassium hydride (KH) dispersed in mineral oil, was obtained from Aldrich Chemicals and was washed with hexane and dried under N₂. Spectra were obtained with a Cary 210 spectrophotometer.

3. Results and discussion

3.1. Reactions with NBT²⁺ and other reagents

Superoxide in aqueous solution reacts quantitatively with NBT²⁺ to give a blue color [11], and the method has been used for its determination in DMSO [6]. We find however that KOH dissolved in DMSO gives the same blue color with NBT²⁺. Since KO₂ inevitably contains some KOH, the NBT²⁺ reaction cannot be used for KO₂ solutions in DMSO. Other compounds which give color reactions with O_2^- , and were also found to react with solutions of KOH in DMSO, included *p*-iodonitrotetrazolium violet, *p*-benzoquinone, anthraquinone, duroquinone and tetranitromethane.

3.2. Optical properties of KO₂ solutions

Slurries of ground KO_2 , stirred by bubbling with N_2 for different times (10 s to 90 min), yielded on filtration solutions which by the oxygen evolution method always showed 5.1 ± 0.4 mM (16 samples), but their optical absorbances (1 mm pathlength) at 270 nm ranged from 0.96-1.67. KO_2 exposed to ordinary humid air must inevitably contain some KOH and KOOH. Although DMSO is often referred to as an 'aprotic' solvent, it is well known to react

with strong bases such as t-BuOK to form the dimsyl ion [12], CH₃SOCH₂. We suspect that some dimsyl may be present in KO₂ solutions. For example, in a typical experiment, a solution of H₂O in DMSO was added to a 0.48 mM KO₂ solution to give a solution 5.56 M in H₂O. While there was a rapid drop of 26% in the absorbance at 265 nm, the cytochrome c titration showed a drop of only 2% in the O₂ concentration. Subsequently, the absorbance and O₂ concentration declined relatively slowly; a further drop of 75% in the absorbance and 77% in the O_2^- concentration was found after 143 min. Similar results were found at lower H₂O concentrations, and the rate constant for reaction of H₂O with O₂ in DMSO was found to be about $\sim 1.2 \times 10^{-4} \,\mathrm{M}^{-1}$, s⁻¹ (similar to the rate found in dimethylformamide [13]), but something in the solution reacts much faster with H₂O. Although we have some indications that this is dimsyl, we have no definitive proof since the wellknown red color reaction with triphenylmethane [14] gives a faint coloration lasting only seconds. The rapid fading of the red color of the triphenvlmethyl carbanion is most likely due to the presence of small amounts of oxygen in the system which bleaches the color.

We prepared solutions of dimsyl by reacting KH with DMSO [15], and found that the absorbance is proportional to the concentration (determined by formanilide titration [16]) at <1.4 mM; the quotient falls at higher concentrations, probably owing to aggregation [12]. The low-concentration spectrum is shown in fig.1B. These solutions are not very stable, and the values shown are reproducible to only $\pm 20\%$. Solutions of KOH in DMSO showed considerable absorption, but it was neither reproducible nor stable.

Oxygen gas exhibits a charge-transfer spectrum in the ultraviolet in most organic solvents [17], and DMSO is no exception. We determined the solubility of oxygen in DMSO (by the gas chromatographic method described below) as 2.20 ± 0.09 mM . atm⁻¹ at 22.5° C. The absorption spectrum of O₂ in DMSO (recorded νs argon-saturated DMSO) is given in fig.1C.

Since KO₂ solutions are often made up with 18-crown-6 ether added to solubilize the K⁺, we determined the spectrum of KF in 0.3 M 18-crown-6 ether in DMSO, shown in fig.1 A. Exactly the same spectrum was found in solutions of KCl, KCN and KH₂PO₄.

Since it seems impossible to eliminate traces of water, KOH, possibly dimsyl and/or other extraneous species, we were unable to determine an authentic

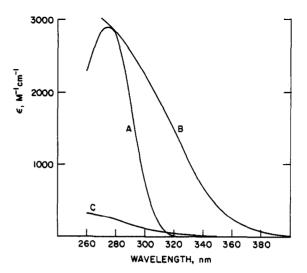


Fig.1. (A) KF in DMSO containing 0.3 M 18-crown-6 ether; (B) dimsyl potassium (CH₃SOCH₂K⁺) in Me₂SO at <1 mM; (C) oxygen dissolved in DMSO (1 atm).

spectrum of O_2^- in DMSO. Published values of its extinction coefficient [7,18] must be regarded as suspect.

3.3. Oxygen evolution by gas chromatography

 O_2^- is quantitatively converted to oxygen by reaction with an excess of iodine in DMSO [7]. He-Saturated dilute KO_2 in DMSO (1 ml) was injected from a syringe into a chamber containing He-swept 1 M I_2 in DMSO. The O_2 formed was swept through silica gel into a Varian series 1520 Aerograph equipped with a 3 m column (4 mm i.d.) packed with mixed 5A-13X molecular sieves, which gave well-separated peaks of nitrogen and oxygen. The area under the oxygen peak was determined, and calibrated using O_2 saturated water (1.30 mM). Determinations of KO_2 concentrations in DMSO were reproducible to $\pm 2\%$ at 1 mM and $\pm 4\%$ at 0.1 mM.

3.4. Titration by ferricytochrome c (cyt. c)

Oxidized cyt. c reacts quantitatively with O_2^- in aqueous solution and the reaction can be very precisely monitored at 550 nm, where the change in molar extinction coefficient is 21 100 M⁻¹. cm⁻¹ [9]. In DMSO solution, O_2^- can be determined by adding the solution to a large volume of aqueous cyt. c, but great care must be taken to avoid the self-disproportionation reaction of O_2^- which occurs in water as a result of partial conversion of O_2^- to HO_2 , and which competes with the reaction of O_2^-/HO_2 with the cyt. c. Since

Table 1
Comparison of cyt. c and O₂-evolution methods

Dilution factor	[O ₂] (mM)	
	O ₂	Cyt. c
1	0.386	0.407
2	0.198	0.196
4	0.092	0.103
8	0.045	0.051

the disproportionation is less rapid in alkaline solution, the cyt. c is phosphate-buffered to pH 9.75; the solution is rapidly stirred, and the DMSO solution added very slowly (<0.3 ml/min) to avoid any significant buildup of O_2^- concentration. Dropwise addition must be avoided, since one small drop will carry too much O_2^- at once into the solution; the biuret tip is immersed in the stirred solution, and the flow rate controlled by a Fisher-Porter Lab-Crest stopcock.

Table 1 shows results obtained by this method on a series of solutions obtained by successive 1:1 dilutions from a diluted stock solution of KO₂ in DMSO, together with determinations on the same solutions by the oxygen evolution method.

Acknowledgements

This research was done at Brookhaven National Laboratory under contract with the US Department of Energy and supported by its Office of Basic Energy Sciences and in part by National Institutes of Health grant RO1GM23656-05.

References

- [1] Valentine, J. S. and Curtis, A. B. (1975) J. Am. Chem. Soc. 97, 224-226.
- [2] McEiroy, A. D. and Hashman, J. S. (1964) Inorg. Chem. 3, 1798-1799.
- [3] Sawyer, D. T. and Roberts, J. L. jr (1966) J. Electroanal. Chem. 12, 90-101.
- [4] Fee, J. A. and Valentine, J. S. (1977) in: Superoxide and Superoxide Dismutases (Michelson, A. M. et al. eds) pp. 19-60, Academic Press, New York.
- [5] Valentine, J. S. (1979) in: Biochemical and Clinical Aspects of Oxygen (Caughey, W. S. ed) pp. 659-677, Associated Press, New York.
- [6] Foote, C. S., Shook, F. C. and Abakerli, R. A. (1980)J. Am. Chem. Soc. 102, 2503-2504.
- [7] Kim, S., DiCosimo, R. and San Filippo, J. jr (1979) Anal. Chem. 51, 679-681.
- [8] Simic, M. G., Taub, I. A., Tocci, J. and Hurwitz, P. A. (1975) Biochem. Biophys. Res. Commun. 62, 161-167.
- [9] Van Gelder, B. F. and Slater, E. C. (1962) Biochim. Biophys. Acta 58, 593-595.
- [10] Nappa, M. and Valentine, J. S. (1978) J. Am. Chem. Soc, 100, 5075-5080.
- [11] Bielski, B. H. J., Shiue, G. G. and Bajuk, S. (1980) J. Phys. Chem. 84, 830-833.
- [12] Brauman, J. I., Bryson, J. A., Kahl, D. C. and Nelson, N. J. (1970) J. Am. Chem. Soc. 92, 6679-6680.
- [13] Nanni, E. J., Stallings, M. D. and Sawyer, D. T. (1980)J. Am. Chem. Soc. 102, 4481-4485.
- [14] Price, G. G. and Whiting, M. C. (1963) Chem. Ind. 775-776.
- [15] Olmstead, W. N., Margolin, Z. and Bordwell, F. G. (1980) J. Org. Chem. 45, 3295-3299.
- [16] Steiner, E. C. and Gilbert, J. M. (1963) J. Am. Chem. Soc. 85, 3054-3055.
- [17] Tsubomura, H. and Mulliken, R. S. (1960) J. Am. Chem. Soc. 82, 5966-5974.
- [18] Matheson, I. B. C. and Lee, J. (1969) Spectroscop. Lett. 2, 117-119.